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The generalized multicomponent short-range order (GM-SRO) parameter has

been adapted for the characterization of short-range order within the highly

chemically and spatially resolved three-dimensional atomistic images provided

by the microscopy technique of atom-probe tomography (APT). It is

demonstrated that, despite the experimental limitations of APT, in many cases

the GM-SRO results derived from APT data can provide a highly representative

description of the atomic scale chemical arrangement in the original specimen.

Further, based upon a target set of the GM-SRO parameters, measured from

APT experiments, a Monte Carlo algorithm was utilized to simulate statistically

equivalent atomistic systems which, unlike APT data, are complete and lattice

based. The simulations replicate solute structures that are statistically consistent

with other correlation measures such as solute cluster distributions, enable more

quantitative characterization of nanostructural phenomena in the original

specimen and, significantly, can be incorporated directly into other models and

simulations.

1. Introduction

There is considerable interest in the study of the atomic scale

architecture of solute and dopant atoms within a growing

range of technologically important materials systems. In many

materials the distribution of nanoscale atomic clusters that can

form during the very early stages of elevated temperature

ageing dictate the nucleation pathways for precipitation

(Ringer & Hono, 2000; Nie et al., 2002; Clouet et al., 2006).

Furthermore, there is an increasing consensus that clusters

themselves exert significant influence on bulk material prop-

erties and performance (Castell et al., 2003; Heinrich et al.,

2003; Pereloma et al., 2004; Ralston et al., 2010; Marceau et al.,

2010). However, much still remains to be understood about

these phenomena. This is due largely to experimental limita-

tions in the determination of chemistry and three-dimensional

structure at the nanoscale. Moreover, at the atomic scale

there is an inherent complexity in describing the intricate

nature of chemical distribution throughout the crystal in

multicomponent materials.

To this end, in 1950 Cowley presented a new definition of

short-range order (SRO) to describe the solute distribution

within a binary alloy (Cowley, 1950b). This definition, known

widely as the Warren–Cowley (WC) SRO parameter, was later

extended by de Fontaine to describe pairwise correlations in

multicomponent systems (de Fontaine, 1971). Recently,

Ceguerra et al. developed a comprehensive generalized

multicomponent (GM) SRO formalism, using the expression

introduced by Cowley, which allows a more complete

description of solute arrangements in complex solid solutions

(Ceguerra, Powles et al., 2010). SRO is a powerful measure of

the relationships between atomic species and is a robust

method for investigating solute clustering phenomena.

However, its true potential thus far has been constrained by

experimental limitations.

Conventionally, SRO parameters are measured from the

analysis of diffuse scattering in X-ray diffraction patterns

from, most usually, binary systems (Cowley, 1950a; Welberry,

1985). These concise measures of pair correlations arise

naturally from kinematical diffraction physics and it can be

shown that the SRO parameters are proportional to the peak

heights of the Patterson function: a generalized form of radial

distribution function (Cowley, 1960). SRO analysis of the

diffraction patterns involves identifying and separating the

intensities due to diffuse scattering which, in part, are gener-

ated by disorder in the occupation of crystal lattice sites by

different elemental species. Other phenomena besides this

chemical disorder may give rise to diffuse scattering, and this

complicates interpretation. Structural disorder in the form of

deviations from the perfect lattice can arise as a result of ‘size
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effects’ or perturbations of atomic positions caused by atomic

interactions, and these serve to displace the diffuse peaks. For

binary alloys under the kinematical approximation, Cowley

derived expressions to accommodate such effects (Cowley,

1968), which remedy the interpretation issue. Cowley &

Murray (1968) also extended the SRO parameters by

including higher-order correlation functions to account for

departures from single scattering approximations, as can occur

for dynamical interactions in electron diffraction. Higher-

order correlations also arise from the size effects, although

these can be neglected if the displacements are small, but the

general interpretation is quite complicated (Cowley, 1995).

Clearly, all of these considerations become considerably more

complex for ternary or multicomponent alloys. For example, in

a multicomponent system containing n different elements,

n(n � 1)/2 distinct radiations are required in order to resolve

the pairwise SRO signals from diffuse scattering experiments

(de Fontaine, 1971).

Interpretation issues for diffuse scattering by SRO can be

overcome by simulating diffraction patterns from hypo-

thesized atomic configurations and comparing with experi-

ment. For modelling SRO in non-crystalline materials,

McGreevy & Pusztai (1988) developed a reverse Monte Carlo

(RMC) algorithm, which produces ensembles of atomic

configurations made consistent with experiment by iteratively

minimizing the difference between simulated and experi-

mental diffraction data. The RMC method provides an inter-

pretation of pair-correlated diffuse scattering from disordered

structures such as glasses. The algorithm has been extended to

model disordered crystals (Nield et al., 1992) and single crys-

tals to describe diffuse scattering in conjunction with sharp

Bragg diffraction (Nield et al., 1995). Proffen & Welberry

(1997) explicitly considered occupational and displacement

disorder and prescribed refinements to the algorithm, required

for systems containing both of these scattering contributions.

The computationally intensive nature of RMC modelling of

SRO for single crystals was later emphasized (Proffen &

Welberry, 1998; Welberry & Proffen, 1998), whilst Tucker et al.

(2001) espoused the benefits of polycrystalline specimens to

concurrently model diffuse and Bragg scattering in an efficient

manner. The RMC method has also been applied to model

diffuse scattering from magnetic SRO in neutron powder

diffraction (Mellergård & McGreevy, 1999).

Alternatively, the quantification of the multicomponent

SRO is well suited to the real-space three-dimensional

atomistic reconstructions generated in atom-probe tomo-

graphy (APT). The extremely high chemical and spatial

resolution analyses provided in APT enable the direct

microscopic imaging of atomic clusters which can represent a

subtle, but significant, local chemistry perturbation that may

contain just a few atoms in a solid solution. This distinguishes

APT from many other techniques, because it provides direct

three-dimensional chemical information on this length scale,

whereas other microscopies cannot achieve the combined

levels of chemical and spatial resolution required for such

measurements. APT eliminates the substantial effort of

measuring the GM-SRO using diffuse scattering experiments.

In fact, the pairwise nature of diffraction studies would have

limited the capacity of each GM-SRO in incorporating an

unlimited number of elements. Instead, APT provides the

means to characterize such complex correlations through the

model of crystallographic shells in real space. This was

achieved through the development of an approach for char-

acterizing the GM-SRO parameters as a function of atomic

radial distances.

However, APT is constrained by certain limitations which

can affect its capacity to measure SRO. The first is the finite

detection efficiency of the instrument itself resulting in the

stochastic exclusion of at least �43% of all atoms from the

final three-dimensional reconstruction. Another significant

issue is limited spatial resolution which blurs the positions of

the atoms from their true lattice sites, resulting in the partial or

full loss of the crystalline atomic structure. The quantification

of these issues has been the subject of detailed analyses and

modelling (Geiser et al., 2007; Cadel et al., 2009; Moody et al.,

2009; Gault, Moody et al., 2010). Given the highly resolved

atomic information available from the atom probe and the

nature of the above experimental limitations in scattering, we

have investigated the viability of characterizing solute SRO

using this atomistic microscopy technique.

2. Theory

2.1. GM-SRO parameter

The GM-SRO parameter (Ceguerra, Powles et al., 2010) is a

definition used to describe the chemical short-range order of a

multicomponent system. It has its basis in the WC-SRO

parameter (Cowley, 1950b)

�m
BA ¼

ðpm
BA � XAÞ

ð1� XAÞ
; ð1Þ

where in a binary system with composition XA, pm
BA is the

probability of finding an A atom in the mth crystallographic

shell around a B atom. Fig. 1(a) is a simple illustration of how

the SRO analysis interrogates the local atomic neighbourhood

based upon the well defined shell structure of a perfect lattice.

The WC-SRO expression was later extended by de Fontaine

who derived a theoretical pairwise multicomponent SRO

(PM-SRO) parameter (de Fontaine, 1971) suitable for the

characterization of more complicated materials. In a ternary

A–B–C system, the PM-SRO is calculated by considering the

pairwise probabilities of finding an atom of type C around

another atom of type B:

�m
BC ¼

ðpm
BC � XCÞ

ð�BC � XCÞ
: ð2Þ

From the perspective of kinematic diffraction, which accounts

for pair correlations only and not triplets/quadruplets/multi-

plets etc., the PM-SRO provides an adequate generalization

of the original WC-SRO parameters. Despite the fact that

pair correlations contain much structural and chemical

information, and that these are currently used as the predo-

minant quantitative descriptors of short-range ordering from
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reciprocal-space data, modern atom-probe data sets can

provide the real-space positions and chemical identities of

around 100 million atoms in three dimensions. This therefore

offers the potential for a richer short-range order descriptor to

account for multicomponent correlations and offers a conve-

nient means to statistically reduce the vast complexity of

structural and compositional correlations that exist in such

data sets. Structural correlations beyond pairs can be readily

computed from atom-probe data, such as triplet distribution

functions and so on.

The GM-SRO parameter equation [equation (3)] further

extends the definition of SRO for the consideration of ternary

or higher-order multicomponent correlations. The expression

for the GM-SRO is generalized from the PM-SRO definition,

which is also amenable to shell-based correlations, but unlike

the GM-SRO it only correlates pairs of elements in multi-

component systems, and it does not consider multicomponent

correlations (i.e. between sets of elements). The GM-SRO

parameters are defined in terms of structural pair correlations

by retaining the concept of neighbour shells and are gener-

alized to include higher-order compositional correlations, but

similar to the PM-SRO they do not provide higher-order

structural correlations (such as triplets, which contain infor-

mation about bond angles etc). They do, however, contain

significant crystallographic information by virtue of the shell

distances – for instance, in face-centred cubic (f.c.c.) crystals

the first shell contains neighbouring atoms that are h110i

family of directions from the centre atom, the second shell is

h100i. In principle, higher-order structural correlations could

also be incorporated by dispensing with shells; however, this

would add significant complexity and the statistical utility of

such information may be called into question.

The GM-SRO parameter is defined as

�m
fBjg

k
j¼1fClg

h
l¼1
¼ ð�1Þ

�
1þ�

fBjg
k
j¼1
fCl g

h
l¼1

�
pm
fBjg

k
j¼1fClg

h
l¼1

� XfClg
h
l¼1

�fBjg
k
j¼1fClg

h
l¼1
� XfClg

h
l¼1

 !
;

ð3Þ

where pm
fBjg

k
j¼1fClg

h
l¼1

represents the probability that in the mth

crystallographic shell around any atom belonging to the set of

k different elements fBjg there occurs an atom belonging to a

second set of h different elements fClg, which may or may not

overlap with fBjg. This probability is defined as

pm
fBjg

k
j¼1fClg

h
l¼1
¼

Pk
j¼1

�
NBj

Ph
l¼1 pm

BjCl

�
Pk

j¼1 NBj

; ð4Þ

where NBj
is the number of atoms of type Bj . The leading term

in the GM-SRO definition [equation (3)] is incorporated only

to simplify interpretation of the results. It is needed for those

cases when �fBjg
k
j¼1fClg

h
l¼1
¼ 0, and its only function is to ensure a

positive value of a GM-SRO parameter is indicative of co-

segregation at that crystallographic shell, whereas a negative

value indicates anti-segregation of the two sets of elements.

The generality of the GM-SRO arises from its ability to

consider the correlation existing between two sets of elements

within a single parameter. In the case where the character-

ization of chemical–spatial relationships between two sets of

elements is of interest, the GM-SRO provides the capacity to

manage the complexity of multicomponent correlations. The

number of GM-SRO parameters is equal to the total number

of all possible combinations of possible sets of elements fBjg

and fClg. Table 1 shows a comparison for the total number of

GM-SRO parameters versus PM-SRO for describing possible
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Table 1
Number of PM-SRO and GM-SRO parameters according to the number
of components in the system.

Components
No. of PM-SRO
parameters

No. of GM-SRO
parameters

2 4 9
3 9 49
4 16 225
5 25 961
6 36 3969
7 49 16129
8 64 65025
9 81 261121

10 100 1046529
11 121 4190209

Figure 1
Schematic of the definition of atomic shells for the GM-SRO calculation.
(a) A perfect crystal lattice in which atoms are separated by discrete radii
and hence shells are easily defined. (b) A two-dimensional illustration of
atom-probe data with finite detection efficiency and spatial resolution
effects. Atoms from the same shell can no longer be exactly defined by a
single radius from the central atom. Instead shells are defined by a finite
width as illustrated by the shading. Atoms occurring within a certain
shaded region are assigned to the respective shell.



correlations in a material system as a function of the number

of components it contains.

2.2. Application of GM-SRO to atom-probe data

In APT, single atoms are successively removed from the

surface of a very sharp needle-shaped specimen by field

evaporation (Kelly & Miller, 2007; Seidman, 2007). The

diverging electric field at the apex of the specimen gives rise to

a highly magnified projection of the ions onto a position-

sensitive detector at some distance from the specimen. To

characterize ionic identity by time-of-flight mass spectrometry,

an electric field is generated by the superimposition of a DC

voltage and a high-voltage (HV) pulse. Alternatively, the HV

pulse can be replaced with ultra-short laser pulses to generate

ionization events. Each hit on the detector can be directly

related to the pulse responsible for the corresponding ion-

ization event, facilitating highly accurate time-of-flight

measurements and mass resolution. A reverse-projection

algorithm, combined with the sequence of evaporation and

an assumed model for specimen shape, enables a three-

dimensional atomistic reconstruction of the analysed volume

(Bas et al., 1995; Gault et al., 2011). These reconstructions

contain a considerable amount of information, routinely

incorporating in the range of 107–109 atoms, and providing an

excellent statistical basis for analysing the spatial distribution

of solutes within the localized volume of interest.

The spatial resolution of APT is extremely high (Cadel et

al., 2009; Gault et al., 2009; Gault, Moody et al., 2010).

However typical interatomic spacings are smaller than the

lateral resolution, resulting in the loss of significant crystal-

lographic information. The blurring of the lattice in the

reconstruction is due to a combination of trajectory aberra-

tions in the flight path of the ions, local geometric and

compositional variations on the surface of the specimen, and

the simplified model of the evaporation geometry utilized in

the three-dimensional reconstruction. Further, there is a

random loss in detection efficiency due to the limited open

area of the micro-channel plate (MCP) detectors, and �43%

of the atoms evaporated from the specimen are consequently

lost from the final analysis. This is a design limitation common

to all current atom-probe detectors. However, despite their

exclusion from the data, the undetected atoms are taken into

consideration in the creation of the tomographic reconstruc-

tion, meaning that high-precision interatomic distances

between the detected atoms are still achieved. Ultimately, the

limited lateral resolution and detector efficiency prevent the

direct analysis of crystallographic structure from current

atom-probe data sets.

The application of GM-SRO measurements has previously

been demonstrated for the characterization of simulations, in

which atoms are constrained to a perfect three-dimensional

lattice configuration of atoms (Ceguerra, Powles et al., 2010).

In such a system all the atoms neighbouring a reference atom

can be thought of as being arranged in shells at discrete radii,

as illustrated in Fig. 1(a). With knowledge of the type of crystal

and the theoretical lattice parameter of the system, these radii

can be predicted. In a perfect crystalline system the shell may

be considered as an infinitely thin theoretical surface.

However, APT data are imperfect. As illustrated in Fig. 1(b), a

significant fraction of atoms are missing from the system in the

local neighbourhood surrounding each atom, because of the

limited detection efficiency of the experiment. Furthermore,

those atoms that are measured are slightly offset from their

true lattice positions.

The GM-SRO calculation must be specifically adapted for

the application to experimental APT data. Hence, the defini-

tion of the atomic shells has been adapted such that it now

incorporates a finite width, indicated by the shading in Fig.

1(b). The extent of the mth shell thickness is determined by

the theoretical perfect crystal (m � 1)th, mth and (m + 1)th

shell surface radii, which are rm�1, rm and rm+1, respectively.

Consequently atom j is defined to be an mth shell neighbour of

atom i if they are separated by a distance dij such that

rm�1 þ rm

2
< dij<

rm þ rmþ1

2
: ð5Þ

This enables the characterization of imperfect systems via a

shell-based GM-SRO analysis. The integration of pair corre-

lations within shells mimics the same procedure used to

quantitatively estimate coordination numbers for radial

distribution functions of structurally disordered solids

(Cockayne & McKenzie, 1988).

2.3. Monte Carlo simulations based on target GM-SRO

Complementary experimental methods for measuring SRO,

such as CALPHAD (calculation of phase diagrams) and X-ray

diffraction, have an advantage in that the exact atomic posi-

tions and identities are not required (Cowley, 1950b; Zhu et al.,

2004). However, a significant disadvantage of these approa-

ches is that the three-dimensional atomic structure cannot be

explored in finer detail. Monte Carlo (MC) simulation

approaches have previously been developed to recreate an

atomic scale system with statistically equivalent SRO (Gehlen

& Cohen, 1965; Gerold & Kern, 1987). In these simulations,

the acceptance or rejection of trial moves is based on their

effect upon the overall SRO of the system, rather than the

more usual approach of comparing potential energies, such as

in the Metropolis algorithm (Newman & Barkema, 1999).

The goal of the MC simulations here is to drive the system

towards an atomic configuration with a particular, predefined

GM-SRO. In this case, defining whether or not the swapping

of a pair of atoms has improved the overall configuration of

the system is not straightforward. The target SRO consists of a

set of GM-SRO parameters. For example, take the case of an

A–B–C ternary alloy, with a target subset of GM-SRO {�AA,

�AB, �AC, �BA, . . . , �CB, �CC} defined for the m = 1 shell. It is

possible that the action of randomly swapping a pair of atoms

may move the system towards the �BA target but simulta-

neously also move the system away from the �CB target.

Hence some objective metric is required in the algorithm to

decide on whether the trial move has either improved or

worsened the overall atom configuration of the simulated

system. To this end a ‘residual’ can be defined, as a measure of
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the difference in the current SRO order of the system,

denoted by ‘t’ in {�t
AA, �t

AB, �t
AC, �t

BA, . . . , �t
CB, �t

CC}, and

the target SRO {�AA, �AB, �AC, �BA, . . . , �CB, �CC}. There are

various ways to define the residual (Gehlen & Cohen, 1965;

Gerold & Kern, 1987); however, the precise nature of the

selected definition is critical, since it is central to the efficiency

of the MC algorithm, and influences the capability of the MC

method to achieve a system configuration with the target GM-

SRO. For the purposes of this study, the residual was defined

by

�GM�SRO ¼
P
j�ij � �

t
ijj: ð6Þ

This residual is then used to accept or reject steps within the

algorithm. The fundamental approach of our algorithm, illu-

strated in Fig. 2, is as follows:

(i) Determine a pair of atoms for trial move.

(ii) Swap atom positions.

(iii) Calculate overall GM-SRO residual due to trial move.

(iv) If the GM-SRO residual is decreased:

(a) move is accepted.

(v) If the GM-SRO residual is increased:

(a) move is accepted with random probability, or

(b) move is rejected and atoms are swapped back to

original positions.

(vi) Repeat until reaching target GM-SRO or after n

successive moves fail to decrease residual.

The required number of trial moves is dependent on the

magnitude of the difference between the target and the

current GM-SRO parameter values, the concentration of each

element, the number of shells, the size of the data set and the

number of components.

Several computational enhancements were made to

improve the efficiency of the algorithm. Firstly, a k-dimen-

sional tree data structure (Bentley, 1975) was applied to the

analysis, providing excellent performance in searching for the

k nearest neighbours around each reference atom and

enabling efficient recalculation of the GM-SRO at each step in

the simulation. This structure is also memory efficient. Next,

only the change in GM-SRO due to each trial move was

calculated, rather than recalculating the entire set of GM-SRO

parameters at each step. Further, selection of the atoms for the

trial swap was not completely random but based in part upon

the chemical identity of the atoms and the potential that

randomly moving atoms of this kind would decrease the

residual between a specific GM-SRO’s target and current

values. The combination of these enhancements enables

simulation cells as large as 32 million atoms – or even higher –

to reach the target GM-SRO parameters within �109 steps for

multiple shells. These system sizes are commensurate with

modern APT data sets obtained from experiments and are

plausible on a medium-performance computational platform.

2.4. Simulations investigating the validity of GM-SRO
measurements via APT

Short-range order is one way to describe the detailed nature

of the atomic scale chemical distributions in any given crystal

system. Hence, solute clustering is inextricably linked to the

GM-SRO measured in the system. This is demonstrated in

Fig. 3. Simulated systems were generated for a simple binary

alloy containing 1 million atoms, for compositions of solute

element B as XB = 0.1, 1.0 and 5.0 (at.%), respectively, and for

the target GM-SRO parameter �m¼1
BB = 0 (equivalent to a

random solute dispersion), 0.001 and 0.01, respectively, via the

MC approach described above, on an f.c.c. crystal with a lattice

parameter of 0.404 nm. The cluster-size frequency distribu-

tions within the resulting simulated systems were measured via

the three-dimensional Markov field (3DMF) algorithm

(Ceguerra, Moody et al., 2010). This definition of clustering is

based upon the definition that two solutes are clustered if they

are first-shell (m = 1) nearest neighbours. Thus, Fig. 3

demonstrates the particular way that the cluster-size distri-

bution changes to incorporate increasingly large clusters, as

XB and/or �m¼1
BB increase.

In the next step the perfect lattice systems generated by the

MC simulations were modified to account for limitations in

atom-probe detector efficiency and spatial resolution. By

incorporating these experimental effects, we can approximate

how APT would image the original simulations and thereby

begin to address a key question: how well do APT-derived

GM-SRO measurements represent the actual values of the

original system?

The atom-probe detector efficiency was simulated simply by

the stochastic removal of a specific fraction of atoms from the

perfect f.c.c. crystal with a lattice parameter of 0.404 nm. For

example, in order to simulate the effect of 90% detection
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Figure 2
Monte Carlo algorithm schematic. From an initial configuration, the
following steps are repeated until a chemical configuration is reached that
satisfies the target SRO conditions: (i) choose two dissimilar atoms to
swap, (ii) calculate the change in SRO, and (iii) accept the swap if the
difference between the current SRO and the target SRO has reduced.



efficiency, 10% of the atoms in the simulation were randomly

selected and removed. Limited spatial resolution, which

effectively results in a blurring of the crystal, was modelled by

applying a random offset to each atomic lattice position. The

spatial resolution of APT is anisotropic, more precise in the in-

depth direction (z) than laterally (x–y). Hence the size and

direction of each random offset are individually determined

by an ellipsoidal three-dimensional Gaussian probability

distribution about each crystallographic point. Based upon

previous investigations of APT resolution, the Gaussian was

defined by a full width at half-maximum (FWHM) of 0.2 nm

laterally and 0.06 nm in depth (Vurpillot et al., 2004; Cadel et

al., 2009; Gault, La Fontaine et al., 2010; Gault, Moody et al.,

2010). This approach has been adopted for a

variety of previous APT investigations (Geiser

et al., 2007; Haley et al., 2009; Moody et al.,

2009). However, it should be noted that these

simple techniques to model the nature of

atom-probe data are only approximate and

cannot account for all the complexities in the

field evaporation and subsequent reconstruc-

tion that contribute to the spatial resolution

and detector efficiency. Nevertheless, this

somewhat pragmatic approach is sufficient for

the purposes of investigating the influence of

these experimental limitations on the GM-

SRO analysis.

Fig. 4 plots the GM-SRO as a function of

model detection efficiency, for three f.c.c.

(lattice parameter = 0.404 nm) binary systems

with solute concentrations of XB = 0.1, 1.0 and

5.0 at.%. In each case �m¼1
BB = 0.01 and the

simulation comprised 106 atoms. In the simu-

lations with two higher solute concentrations

the influence of decreasing detection efficiency

is negligible even down to values of �40%.

However, at low detection efficiencies, the spread of values of

�m¼1
BB quickly increases. This is due to the statistical uncertainty

introduced by the removal of larger numbers of atoms. This

uncertainty is accentuated as the alloy compositions become

more dilute, resulting in a higher degree of divergence from

the target value of �m¼1
BB = 0.01, for the lowest values of XB.

This can be explained by the lower number of solute atoms in

the simulation available to contribute to the GM-SRO

measurement. For XB = 0.1 at.% simulation, there are only

1000 solute atoms in a complete data set, and with a detection

efficiency of 0.57, for example, there are only 570 atoms.

Fig. 5 plots the solute–solute GM-SRO as a function of the

FWHM of a spherical Gaussian probability distribution

applied to randomly displace each atom from the perfect f.c.c.

crystal (lattice parameter 0.404 nm, XB = 1.0 at.%). In this

case, a spherical Gaussian was implemented instead of an
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Figure 4
Effect of model detector efficiency on the first-shell GM-SRO (for solute–
solute correlation) of three simulated binary data sets with approximately
1 million atoms, with solute concentrations of 0.001 (0.1%), 0.01 (1%) and
0.05 (5%) and the same theoretical GM-SRO of 0.01. Vertical lines
indicate estimated detection efficiencies of a conventional straight ion
flight path atom probe (0.57) and an atom probe fitted with a reflectron
(0.37).

Figure 5
Effect of spherical Gaussian noise on first-shell GM-SRO, on an atomistic
system with solute–solute GM-SRO = 0.01, XB = 1.0 at.% and efficiency
level at 0.57.

Figure 3
Cluster-size distribution of a model binary system as represented by the number density of
clusters (per cm3) versus cluster size (in atoms), as a function of both concentration of the
minor element X and GM-SRO. Each series (A, B and C) contains a specific solute
concentration, and is divided into three plots comprised of an SRO of 0, 0.001 and 0.01.
Series A describes a system with 0.001 (0.1%) solute concentration; series B is a system with
0.01 (1%) solute concentration; and series C contains 0.05 (5%) solute. All are in at.%.



ellipsoidal Gaussian for simplicity in interpreting the results.

In actuality, a spherical Gaussian will tend to overestimate the

spatial blurring of the lattice. Here, an A–B binary system with

a GM-SRO value of �m¼1
BB �0.01 and a detector efficiency of

57% was simulated. Fig. 5 demonstrates that, for this example,

spatial blurring with FWHM values below �0.2 nm has a

limited impact on the GM-SRO.

2.5. Recreating the solute distribution of the original system

In the next step theoretical investigations were undertaken

to address another significant question: based upon GM-SRO

measurements of incomplete, APT-like data, are MC simula-

tions able to recreate a lattice-based atomistic distribution that

is statistically equivalent to the perfect and complete original

system?

The three perfect, simulated binary A–B systems with solute

concentrations of XB = 0.1, 1.0 and 5.0 (at.%) and possessing a

GM-SRO parameter of �m¼1
BB = 0.01, calculated for the

analyses in Fig. 3, served as the basis of these calculations.

Each system was subject to stochastic removal of 43% of the

atoms and a spatial blurring of the atomic coordinates from

their ideal lattice positions to model an APT analysis. The

3DMF cluster-characterization procedure was subsequently

applied and cluster-size frequency distributions calculated. In

a perfect Al-based lattice system, a distance of 0.286 nm would

separate two clustered solutes. However, as illustrated in

Fig. 1(b), in APT data (or APT-like simulated data), first-shell

nearest neighbours are more difficult to identify. Hence in this

study, solutes separated by a distance less than dmax = 0.35 nm

were identified as being clustered. This value of dmax was

chosen as a compromise between maximizing the inclusion of

potential first-shell neighbours (theoretically occurring at

0.286 nm) and minimizing the inclusion of second-shell (m = 2)

nearest neighbours (0.404 nm). This represents only one

possible definition of clustering within APT data, although

various others have been developed (Hyde & English, 2000;

Vaumousse et al., 2003; Miller & Kenik, 2004; Stephenson et

al., 2007).

Fig. 6 provides a comparison between the original cluster-

size distributions presented in Fig. 3 and the APT-limited

distributions, derived by the above analysis. The effects of

finite detection efficiency and limited spatial resolution are

pronounced, leading to a distribution of less frequent and

smaller solute clusters than in the original system. The solute–

solute GM-SRO of these artificially deteriorated systems was

then measured, and these values used as target inputs to the

MC simulation so as to generate a new complete and lattice-

based system. The 3DMF procedure was again used to char-

acterize the cluster-size frequency distribution in the resulting

simulations and the results are also presented in Fig. 6. There

is excellent agreement between the cluster distributions

resulting from the MC simulations and those from the original

simulated systems.

Fig. 7 provides a summary of the approach used here, in a

simple flow chart.

(a) A perfect A–B lattice system with composition XB and

GM-SRO = �BB was generated via atomistic simulation using

our MC methods.

(b) The cluster-size distributions were calculated using the

3DMF procedure.

(c) Typical aberrations found in atom-probe experiments

were simulated by the spatial blurring of the atomic lattice and

the random removal of 43% of all atoms. This accounts for

APT spatial resolution and detector efficiency, respectively.

(d) The cluster-size distribution and GM-SRO = �BB* of

these deteriorated (APT-like) systems were calculated using

the same 3DMF procedures.

(e) A new atomistic simulation was generated using the MC

approach based on the target GM-SRO = �BB* values derived

from the deteriorated systems.

(f) The cluster-size distribution of these new systems was

computed and compared to the original distribution.

The simulations indicate that even after deterioration of the

simulation, akin to viewing a specimen through the lens of

APT, there can remain enough crystallographic information to

estimate the atomic scale solute distribution in the original

system. This approach is now applied to actual APT data.

3. Atom-probe experiment

An Al–1.1 Cu–1.7 Mg (at.%) alloy was prepared by induction

melting and direct casting into an ingot mould. The cast ingot

was homogenized at 773 K for 16 h and water quenched.

Afterwards, sample blanks were prepared and solution heat

treated at 798 K for 1 h, quenched rapidly into cold water and

then immediately aged at 423 K for 60 s in one case, and for

1 h in a second case. Specimens were prepared for atom-probe

experiments using standard two-stage electropolishing tech-

niques (Miller, 2000). Atom-probe specimens were analysed

using a Cameca LEAP 3000X, equipped with a delay line

detector. Experiments were conducted at a voltage pulse

fraction of 0.25, with the specimen maintained at cryogenic

temperatures (23 K) under ultra-high vacuum conditions (<4.5

� 10�9 Pa). A constant detection rate of 2 � 10�2 ions per
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Figure 6
Number density of clusters (per cm3) versus cluster size (in atoms), as a
function of concentration (XB = 0.001, 0.05 and 0.01) in a simulated 1
million atom binary system, having initial GM-SRO = 0.01 (solute–
solute).



pulse was ensured by control on the total voltage applied to

the tip.

Using the data acquired from these experiments, a three-

dimensional reconstruction was generated using the com-

mercial IVAS software, employing the advanced calibration

technique outlined by Gault, Moody et al. (2010). Further data

processing was performed, whereby the atoms occurring at the

top and bottom tails of the 100th nearest-neighbour density

distribution were removed as described in Stephenson et al.

(2007). This procedure eliminates regions of aberrantly high

and low atomic density, such as those usually associated with

the presence of crystallographic poles within the data.

4. Results and analysis

4.1. GM-SRO analysis of experimental APT data

The complete set of possible GM-SRO parameters was

characterized up to the 12th crystallographic shell (m = 12) in

each reconstruction, which corresponds to less than a 1 nm

radius from the central reference atom. Fig. 8 provides the

matrix of all possible first-shell (m = 1) solute–solute GM-

SRO correlations for each of the thermal treatments studied.

The as-quenched (AQ) condition for the first shell shows very

small magnitudes of GM-SRO overall, some even negative,

indicating minimal segregation in the first shell. The 60 s

case exhibits uniformly larger values of GM-SRO and has

the largest GM-SRO magnitude for �m¼1
fCuMggfCug. Fig. 8 also

demonstrates similarly ranged values of GM-SRO for the data

from the sample aged for 1 h at 423 K.
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Figure 8
Matrix of first-shell GM-SRO value results for an Al–1.1 Cu–1.7 Mg
(at.%) alloy that has been aged at 423 K for (a) 0 s (AQ), (b) 60 s and (c)
1 h. The light-red outlined squares indicate a negative SRO, whereas the
grey squares show varying levels of solute clustering (lighter squares
depict the lower significance values, and darker squares indicate the
higher significance values).

Figure 7
Flow chart of the first simulation test. This test first creates a simulation
with certain GM-SRO. Degradation to an APT-like system is performed,
and the GM-SRO is measured in this degraded system. A new simulation
is then performed, using the measured GM-SRO from the degraded
system.



The results presented in Fig. 8 are constrained to the first-

shell solute–solute correlations. However, in each case, the

total GM-SRO information (obtained from each APT data

set) provides the average radial dependence of solute distri-

bution around each atom for up to the 12th crystallographic

shell. The increased GM-SRO at higher radii is not necessarily

straightforward to interpret; however it likely indicates the

presence of increasingly large isotropic clusters containing

both solutes.

4.2. Solute cluster analysis of experimental APT data

The 3DMF clustering algorithm was applied to each of the

APT reconstructions, with dmax = 0.35 nm. In each case, the

cluster-size frequency distribution was initially characterized

with respect to clusters containing either or both Cu and Mg

atoms (i.e. Cu and Mg atoms were convoluted and solute

clusters were characterized as pseudo-binary systems, where

pseudo-binary refers to the solute atoms being considered as a
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Figure 9
Cluster-size distributions for the simulated (simulated), simulated with
model detector efficiency (simulated-degraded) and original atom-probe
(atom probe) data sets. Ageing conditions of Al–1.1 Cu–1.7 Mg (at.%)
presented are (a) AQ, (b) 60 s and (c) 1 h.

Figure 10
Cluster-size distributions for the simulated (simulated), simulated with
model detector efficiency (simulated-degraded) and original atom-probe
(atom probe) data sets, for the 60 s aged condition of Al–1.1 Cu–1.7 Mg
(at.%). (a) Pure Cu clusters, (b) pure Mg clusters and (c) clusters
containing both Cu and Mg atoms.



single species rather than separately). The results are shown in

Fig. 9. The analysis was then repeated for the characterization

of pure Cu clusters (i.e. Mg was ignored and only Cu atoms

within dmax of another Cu atom were deemed clustered), pure

Mg clusters, and clusters simultaneously containing at least

one Cu and at least one Mg atom. The resulting cluster-size

frequency distributions for the APT reconstruction corre-

sponding to 60 s ageing are presented in Fig. 10.

4.3. MC simulations targeting APT-derived GM-SRO

The described GM-SRO-targeted MC simulations were

implemented to create complete lattice-based systems

of 107 atoms based upon the respective experimental

measurements. Simulation of the AQ condition utilized the

f�m
CuCu; �

m
CuMg; �

m
MgCu; �

m
MgMgg

12
m¼1 subset of GM-SRO para-

meters. For simulation of the 60 s aged condition the

f�m
CuCu; �

m
CuMg; �

m
MgCu; �

m
MgMg; �

m
AlCu; �

m
AlMgg

4
m¼1 subset of GM-

SRO parameters were used. Finally, the 1 h aged case was

simulated using the GM-SRO subset of f�m
CuCu; �

m
CuMg; �

m
MgCu;

�m
MgMg; �

m
AlCu; �

m
AlMgg

5
m¼1.

The complete set of experimentally derived GM-SRO

parameters was not utilized in any of these cases due to the

fact that APT data are imperfect. Take the example of a

particular lattice site adjacent to a Cu atom in a complete

lattice-based Al–Cu–Mg system. It can be assumed that

measurement of site-occupancy probabilities in this system

would show that the sum of the probabilities that this site

contains an Al, Mg or Cu atom is equal to unity. However, site-

occupancy measurements derived from APT data with 57%

detection efficiency and imperfect spatial resolution cause this

assumption to fail. Therefore, only GM-SRO values with the

solute elements as the nearest neighbour are used in the MC

simulation.

The 3DMF clustering algorithm was then applied to each of

the APT reconstructions, with dmax = 0.35 nm to each of the

simulations, and the results are plotted in comparison to the

results from the corresponding original APT reconstructions

in Figs. 9 and 10. Significantly, these cluster-size frequency

distributions should be representative of the distribution

existing in the original specimen.

4.4. Effect of data quality

In the final step of this analysis, as a check of self-

consistency, the simulated data are artificially deteriorated to

approximate how an APT analysis would render this theore-

tical system and the solute clustering analysis is repeated. That

is, a complete perfect lattice system has been simulated based

upon GM-SRO measurements of APT reconstructions. If the

effects of limited detection efficiency and spatial resolution

are imposed upon these simulations, then the resulting atomic

distribution should be statistically equivalent to the original

APT reconstruction on which it is based. In this analysis this

equivalence is tested by examination of the cluster-size

frequency distributions. This procedure is summarized in the

flow chart provided in Fig. 11.

Hence, the effects of finite detector efficiency, simulated by

the stochastic removal of 43% of atoms, and limited spatial

resolution, based on a Gaussian blurring of the atomic coor-

dinates, were modelled in the simulated data sets. Subse-

quently the 3DMF cluster identification algorithm was

applied, the results of which are shown in comparison to both

the corresponding APT reconstruction and the original

complete reconstruction in Figs. 9 and 10. In each case, the
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Figure 11
Flow chart of the second simulation test. First the GM-SRO is measured
in an APT data set. This GM-SRO is used as the target in a new MC
simulation, and the resulting data set is degraded to an APT-like degree.



resulting cluster-size frequency distribution converges closely

to the experimental distribution measured from APT experi-

ments, indicating the procedures are self-consistent. This is

strong and internally consistent evidence that based on the

analysis of GM-SRO in APT reconstructions it is possible to

retrieve a highly accurate picture of the distribution of atoms

on the lattice in the original specimen.

5. Discussion

Fig. 6 reveals the quantitative nature of the relationship

between the GM-SRO parameters and the cluster-size distri-

butions. In terms of the general trends, the results are as might

be expected, since the GM-SRO is based upon site-occupation

probabilities. Hence, at higher values of GM-SRO, the solute

pairs are more likely to be local neighbours; thus there are

increased probabilities that larger solute clusters can occur.

Although the present results demonstrate that atom-probe

measurements of GM-SRO can reproduce the cluster-size

frequency distribution in an equivalent simulation, it must be

pointed out that the two solid solutions are not identical in

terms of the precise setting of individual atoms in the lattice.

Certainly, the MC approaches described here do not converge

to a unique atomic configuration. However, they do generate

an atomistic simulated system that is statistically equivalent, in

terms of the distribution of solute atoms in shell neighbour-

hoods. The more GM-SRO information that is available from

the original system for input into the simulation, the greater

the capacity to capture higher-order subtleties and nuance in

the simulated atomic distributions.

A promising result comes via the investigation of the

effects of detector efficiency on GM-SRO measurements, as

demonstrated in Fig. 4. Limitations in detector efficiency can

reduce the viability of a range of data-mining approaches that

were developed for the characterization of solute distributions

within APT data. In many cases, the effect of limited detector

efficiency can introduce a bias where the atoms seem more

randomly distributed, as recently demonstrated for the case of

a voxel-based frequency distribution analysis (Moody et al.,

2008). Significant effects, due to the detector, have also been

found in nearest-neighbour analyses (Stephenson et al., 2007).

However, as is most relevant to this study, detection efficiency

has been shown to significantly influence the characterization

of fine-scale clusters via APT (Stephenson et al., 2011). The

results of such experimental limitations on the characterized

cluster density are perhaps most effectively conveyed via

the small sub-volumes in Fig. 12. The GM-SRO approach

described here is significant in that it provides a means for a

thorough characterization of APT data that is, between certain

limits, independent of detection efficiency (Fig. 8). The limits

are affected by the system size, solute concentration and

detection efficiency.

Previously, de Geuser et al. (2006) developed and applied a

pair-correlation function approach to investigate the onset and

evolution of solute SRO in the APT study of a thermally

treated Al–Mg–Si alloy. The pair-correlation function is

closely related to the GM-SRO parameter. However, unlike

the GM-SRO approach applied in this study, the pair-

correlation function does not consider the structures within

and between the atomic shells existing in the crystal lattice.

This is significant because the APT technique has the capacity

to generate atomistic data from a system that includes

significant information about the nearest-neighbour distribu-

tions. One important precaution in using the GM-SRO

analyses relates to systems that contain large second-phase

precipitates. These precipitates may cause significantly

different electric-field intensities in order to achieve field

evaporation. Such systems are prone to severely degraded

resolution of solute-enriched neighbourhoods. This degrada-

tion is caused by large ion trajectory aberrations in the original

experiment due to local magnification effects. In these systems

elements may be preferentially evaporated in between pulses

by the DC voltage. These atoms are lost to the analysis,

leading to the depletion of particular elements and nullifica-

tion of the assumption that the detection efficiency of the APT

experiment is a purely stochastic process. In such a case,

application of SRO analyses may provide unrealistic results.

These issues can be managed by either careful operation of the

atom probe to ensure uniform evaporation, or the discrimi-

nation of the data, so as to operate only on regions that are

precipitate free.

The main advantage of using the Monte Carlo simulation

approach (Fig. 2) is the capacity to determine the chemical

configuration of an atomic scale system with given experi-

mental GM-SRO parameters, without the need to use

thermodynamic data such as interaction potentials. Against

this, however, is the fact that the calculation of the simulated

data set to match the APT data was, at times, quite challen-

ging. Attempts to simultaneously converge a set of GM-SRO

parameters to their target values, defined across multiple

crystallographic shells, were sometimes problematic. For

example, as the algorithm progresses, it can become more

difficult to find a suitable pair of atoms that could swap,

despite the large number of atoms, that would reduce the

overall residual. Instead, the algorithm at first only considered

the first-shell (m = 1) GM-SRO values. After reaching the

target convergence criteria for the first shell, the second shell

(m = 2) GM-SRO values were examined. In this way, higher-

order shell SRO values were consecutively considered until

convergence was not possible. This allowed the algorithm to

run freely and unsupervised, and ensured maximum infor-

mation extraction from the system under investigation.

In Fig. 9, all three pseudo-binary Cu–Mg cluster-size

distribution graphs for the AQ, 60 s and 1 h cases show good

agreement between the original APT data and the simulated

data with efficiency of 57% and spatial blurring with an

ellipsoidal Gaussian. It is highly encouraging that the signifi-

cant complexity within APT data can be closely reproduced

based simply on using the measured GM-SRO values to

generate a simulated atomistic system. Furthermore, Fig. 10

demonstrates that the MC simulations can reproduce the

intricacy of the solute distribution beyond that of a simple

binary system. The Cu–Cu, Mg and Mg–Cu correlations in the

60 s case have each been well described via GM-SRO para-
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meters, and the close match of the cluster-size distribution

between the experimentally measured and the degraded

simulated system indicates that the complex solute archi-

tecture in the original specimen has been accurately repro-

duced.

The ability to simulate the original atomic distribution using

APT-based GM-SRO parameters and thereby estimate actual

cluster-size frequency distributions is a significant outcome of

this research. Such quantitative information is invaluable for

a range of materials research investigations. Previously,
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Figure 12
Atom map of solute clusters identified within 20 � 20 � 100 nm3 sub-volumes of APT experimental data and associated MC simulations (using the first
four shells, and using GM-SRO parameters that do not have aluminium as the nearest-neighbour element) corresponding to the frequency distributions
in Fig. 10(b). (a) Clusters in the complete simulated system based on GM-SRO characterization of Al–1.1 Cu–1.7 Mg, 60 s aged condition, (b) clusters
identified in the MC simulation after the stochastic removal of atoms to model 57% detector efficiency of APT, (c) cluster characterization within the
original APT reconstruction of Al–1.1 Cu–1.7 Mg, 60 s aged condition.



Stephenson et al. (2011) derived an analytical deconvolution

method to calculate the original physical distribution of

solutes from an APT detection-efficiency-degraded distribu-

tion, providing the means to back-calculate the ‘actual’

number densities of clusters from atom-probe results. This

approach is a more straightforward computation; however, it

only outputs the cluster-size frequency distribution. Alter-

natively, the GM-SRO-based MC simulations create large and

complete atomistic systems, within which the solute archi-

tecture may be interrogated directly using a range of analysis

methods. Significantly, it facilitates experimentally derived

three-dimensional atomic structures to assess the quality of

atomistic models and simulations and, further, to be seeded

directly into them. This represents an indispensable tool for

furthering understanding of key correlations and fundamental

atomic relationships driving macroscopic properties.

6. Conclusions

The GM-SRO is a powerful measure of solute distributions in

a multicomponent solid solution. In this study the GM-SRO

definition has been adapted to characterize solute distribu-

tions in imperfect APT data. Simulations have demonstrated

that, provided the data are of a high quality, then with suffi-

cient statistics (i.e. the size of the reconstructed volume) the

SRO parameters measured within APT reconstructions can be

highly representative of the atomic arrangement in the actual

system. The significance of the influence of detection effi-

ciency depends on the size of the data set, and the concen-

tration of the relevant solute within the material. The capacity

of APT to measure the three-dimensional arrangement of

atoms at the nanoscale in multicomponent systems combined

with the generalized multicomponent SRO parameter to

interpret this information represents a significant advance to

crystallography.

It has been demonstrated that the GM-SRO is directly

related to the cluster-size frequency distribution of solutes

within the system. The GM-SRO technique has been applied

to real experimental data from a ternary Al–Cu–Mg alloy. It

was shown that the GM-SRO measurements provide a new

means of classifying structural correlations, which are robust

in the presence of limited detector efficiency. Based upon

target GM-SRO values derived from APT data, MC-based

atomistic simulations have been used to generate a corre-

sponding system with an atomic configuration that is statisti-

cally equivalent to that from the original specimen. The way in

which an APT experiment would visualize these perfect

systems can be modelled by artificially imposing the limita-

tions of experiments on the simulation. It is demonstrated that

the simulated APT-like systems correspond closely to the

original APT experimental reconstructions. This is strongly

indicative of the accuracy of the APT-measured SRO and the

capacity to use this information to simulate realistic repre-

sentation of the atomic arrangements in the original system.

The combination of APT-based GM-SRO measurements

and Monte Carlo simulations is a valuable new tool in the field

of crystallography and characterization. It represents a step

further into the realm of the crystallography of entire systems

of chemically complex, multicomponent solid solutions.
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